
Clustered Hierarchical Search Structure for
Large-Scale Packet Classification on FPGA

Oğuzhan Erdem
Electrical and

Electronics Engineering

Middle East Technical University

Ankara, TURKEY 06800

Email: ogerdem@metu.edu.tr

Hoang Le
Ming Hsieh Department of

Electrical Engineering

University of Southern California

Los Angeles, USA 90007

Email: hoangle@usc.edu

Viktor K. Prasanna
Ming Hsieh Department of

Electrical Engineering

University of Southern California

Los Angeles, USA 90007

Email: prasanna@usc.edu

Abstract—Most current SRAM-based high-speed Internet Pro-
tocol (IP) packet classification implementations use tree traversal
and pipelining. However, these approaches result in inefficient
memory utilization. Due to the limited amount of on-chip memory
of the state-of-the-art Field Programmable Gate Arrays (FPGAs),
existing designs cannot support large filter databases arising in
backbone routers and intrusion detection systems.

Hierarchical search structures for packet classification exhibit
good memory performance and support quick rule update.
However, pipelined hardware implementation of these algorithms
suffer from inefficient resource and memory usage due to varia-
tion in the size of the trie nodes and backtracking. We propose
a memory efficient organization denoted Clustered Hierarchical
Search Structure (CHSS) for packet classification. We present
a clustering algorithm that partitions a given filter database
to reduce the memory requirement. We show that, using the
resulting structure, backtracking is not needed to perform a
search. We introduce two parameters (NRtrie, NRtree), which
can be chosen based on the given filter database to achieve
good memory efficiency. Our algorithm demonstrates substantial
reduction in the memory footprint compared with the state-of-
the-art. For all publicly available filter databases, the achieved
memory efficiency is between 21.54 and 41.25 bytes per rule.
We map the proposed data structure onto a linear pipeline
architecture to achieve high throughput. Post place and route
result using a state-of-the-art FPGA device shows that the design
can sustain a throughput of 408 million packets per second, or
130.5 Gbps (for the minimum packet size of 40 Bytes).

I. INTRODUCTION

State-of-the-art FPGAs offer high operating frequency, un-

precedented logic density and a host of other features. Addi-

tionally, FPGAs are programmed specifically for the problem

to be solved. They can achieve higher performance than

general-purpose processors. Thus, FPGA is a promising im-

plementation technology for packet forwarding as well as for

packet classification [3], [4], [9], [12], [14].

Most hardware-based solutions for high speed packet pro-

cessing fall into two main categories: ternary content ad-

dressable memory (TCAM)-based and dynamic/static random

access memory (DRAM/SRAM)-based solutions. Although

TCAM-based engines can retrieve results in just one clock

cycle, their throughput is limited by the relatively low speed

Supported by the U.S. National Science Foundation under grant No. CCF-
1018801. Equipment grant from Xilinx is gratefully acknowledged.

of TCAMs. They are expensive and offer little adaptability

to new addressing and routing protocols [1]. Since SRAM-

based solutions utilize some kind of tree traversal, they require

multiple cycles to process a packet. Several researchers have

explored pipelining to improve the throughput. However, these

designs suffer from inefficient memory utilization, which

limits the number of supported filters, and/or poor support

for incremental update. These have been the dominant issues

for packet classification implementations on FPGA.

The key challenges to be addressed in designing an architec-

ture for IP packet header classification are (1) size of supported

ruleset, (2) high throughput, (3) scalability, and (4) incremental

update. To address these issues, we propose and implement a

scalable, high-throughput, and memory-efficient SRAM-based

linear pipeline architecture for packet classification on FPGAs,

namely CHSS. This paper makes the following contributions:

1) A clustering algorithm that partitions a given filter

database to eliminate backtracking in the state-of-the-

art hierarchical search structures (Section III).

2) A three-stage parameterized hierarchical search structure

for packet classification. The parameters of the design

can be tuned for a given ruleset to improve the memory

efficiency (Section III).

3) A linear pipelined SRAM-based architecture that can be

easily implemented in hardware (Section IV).

4) A design that achieves memory efficiency between 21.54
and 41.25 bytes per filter, and sustains a high throughput

of 408 million packets per second on a state-of-the-art

FPGA device (Section V).

The rest of the paper is organized as follows. Section II

covers the background and related work. Section III details the

proposed clustering algorithm and data structure. Section IV

introduces the proposed architecture and its implementation

on FPGA. Section V presents experimental setup and imple-

mentation results. Section VI concludes the paper.

II. BACKGROUND

A. Notations

The following notations are used throughout the paper: SA -

Source Address, DA - Destination Address, PRTCL - Protocol,

2011 21st International Conference on Field Programmable Logic and Applications

978-0-7695-4529-5/11 $26.00 © 2011 IEEE

DOI 10.1109/FPL.2011.44

201

SP - Source Port, and DP - Destination Port.

B. Packet classification overview

Packet classification is one of the fundamental challenges

in designing high speed router. It enables the router to

support firewall processing, quality of service differenti-

ation, virtual private networks, policy routing, and other

value added services. Therefore, packet header classification

is an essential part of a full-featured network router. An

IP packet is classified based on 5-tuple header filters (i.e.

〈SA,DA,PRTCL, SP,DP 〉), in which fields are generally

specified by prefixes or ranges. When a packet arrives at a

router, its header is compared against a set of rules, often

known as a ruleset or filter database. Each rule can have one

or more fields and their associated value, a priority, and an

action to be taken if matched. A packet is considered matching

a rule only if it matches all the fields within that rule. A

sample ruleset is shown in Table I. The terms ruleset and

filter database are used interchangeably in this paper.

TABLE I
SAMPLE 5-FIELD RULESET

Rule SA DA SP DP PRTCL Priority Action

R1 0* 10* 80 * TCP 1 Act0

R2 0* 01* 17 17 UDP 2 Act1

R3 0* 1* 44 * UDP 2 Act2

R4 00* 1* 17 44 UDP 3 Act3

R5 00* 11* * 100 TCP 4 Act4

R6 10* 1* * * * 5 Act5

R7 * 00* * * TCP 5 Act6

R8 0* 10* * 100 TCP 6 Act7

R9 0* 1* * * TCP 7 Act8

R10 0* 10* 17 17 UDP 7 Act9

R11 111* 000* 80 * TCP 8 Act10

C. Related Work

Many proposed packet header classification algorithms and

architectures are based on decision trees, which take the ge-

ometric view of the packet classification problem. HiCuts [5]

and its enhanced version HyperCuts [16] are representatives of

such algorithms. The common problems of these approaches

are the large variance in the memory efficiency due to rule

duplication and the lack of support for incremental updates.

Decision forest [9] proposed a partitioning algorithm to reduce

the rule duplication during the construction of the decision

trees. However, this work was aimed to solve a different

problem in which the number of fields is extended from 5

to 11 fields. Thus, it is not clear how effective this approach

is when applying to the classic 5-field packet classification.

Another popular approach is hierarchical-trie (H-trie). An

H-trie is built using SA and DA prefixes. Initially, a SA trie

is constructed. Each prefix node of the SA trie hierarchically

connects a DA trie. A prefix node in a DA trie stores rules

which have the same source prefix field. Search operation

starts from the SA trie. If a match occurs then the correspond-

ing DA trie is traversed. Although a match can be found in

any node of the DA trie, search has to backtrack to the SA

trie and repeats the same operation for the next matched SA

prefix to find the highest priority match. The search terminates

when all the matched nodes in the SA trie are visited. Set-

pruning trie eliminates the backtracking by replicating the

rules [20]. Grid-of-tries (GoT) [18] data structure for 2-field

packet classification avoids the backtracking by introducing

switch pointers to some trie nodes; and hence each rule is

stored in only one node. In GoT, all the matching rules are

not traversed because a rule with a longer destination prefix

length is assumed to have a higher priority than a rule with a

shorter destination prefix length. The authors in [2] presented

the Extended Grid-of-tries (EGT) to improve the previous idea

to support 5-field packet classification. Each node in EGT

has a pointer to a list of rules. Whenever a matching node

is reached, linear search is performed in the corresponding

rule list. Although EGT has good memory performance, large

number of worst-case memory accesses decreases the search

time performance.

III. ALGORITHM AND DATA STRUCTURE

A. Definitions

Definition Prefix node in a trie is any node to which a path

from the root of the trie corresponds to a SA or DA prefix

of a rule. If a prefix node is a leaf node then it is called leaf
prefix node, otherwise non-leaf prefix node. If there is no

valid prefix stored in a trie node, then it is called a non-prefix
node.

Definition Two prefixes x, y are said to be disjoint if x is not

a prefix of y and y is not a prefix of x. A prefix set such that

all pairs of prefixes are disjoint is called a disjoint prefix set.
Definition Two rules are said to be overlapped if they have

the same SA and DA prefixes. For instance, R1, R8 and R10

in Table I are overlapped.

Definition Memory efficiency is defined as the average

amount of memory (in bytes) required to store a filter rule.

B. Clustering Algorithm

While hierarchical trie structures can easily be implemented

on multi-core network processors, the hardware implemen-

tation of these algorithms has two issues: (1) backtracking

requirement and (2) memory inefficiency. There are 3 types of

backtracking: (1) from a DA trie node to a SA trie node, (2)

from a DA trie node to another DA trie node within the same

DA trie, and (3) from a DA trie node to another DA trie node of

a different DA trie. In these cases, the search needs to proceed

in the backward direction and requires stalling the pipeline.

The memory inefficiency is due to the variable number of

rules stored in each node of the search structure. This number

ranges from 0 to 73 for different rulesets [19]. In hardware

implementation, the size of a node is determined by that of

the largest node, leading to excessive and inefficient memory

usage. Memory efficiency issue is addressed in Section III-C.

We propose a clustering algorithm to partition a given

ruleset based on the SA field to eliminate backtracking from

202

a DA trie to the SA trie. The remaining types of backtracking

are addressed in Section III-C. The algorithm takes a set of

prefixes as its input and generates a collection of non-empty

subsets {Si}. Each subset is called a cluster. In each cluster,

the prefixes are pairwise disjoint; and the trie representation of

Si, or simply Si trie, only contains prefixes at the leaf nodes.

Each Si trie has its own set of DA tries. Each trie corresponds

to a leaf node of the Si trie. Note that in the worst case, the

number of clusters is 32 for IPv4. However, our analysis of

the real life and synthetic rulesets collected from [19] shows

that the number of clusters is at most 4. The pseudo-code is

given in Algorithm 1.

Algorithm 1 Clustering algorithm

Input: Prefix set S
Output: A partition of S into a collection of non-empty prefix subsets such

that within each subset all the prefixes are pairwise disjoint
1: num sets = 0
2: Sort the prefixes in S by length
3: while S �= φ do
4: Snum sets ← φ, S′ ← φ
5: while S �= φ do
6: Let Pj be the longest prefix in S
7: if Pj is disjoint with all the prefixes in Snum sets then
8: Add Pj to Snum sets

9: else
10: Add Pj to S′
11: end if
12: Delete Pj from S
13: end while
14: S = S′, num sets = num sets+ 1
15: end while
16: return {Si}, 0 ≤ i < num sets

C. Clustered Hierarchical Search Structure (CHSS)

The proposed hierarchical data structure consists of 3 stages:

Stage 1 (SA trie): One binary trie is built for each cluster

using the SA prefixes. These SA tries have 2 properties: (1)

all the prefixes are at the leaf nodes and (2) no rules are stored

at any node.

Stage 2 (DA trie): Each leaf node of the SA tries connects

to a DA trie. Therefore, the number of DA tries equals to the

number of SA prefixes within a cluster. Each prefix node of a

DA trie has at least one rule. For each rule, only the SP, DP,

PRTCL, and Priority fields are stored. The prefix nodes of the

DA trie can be a leaf prefix node or a non-leaf prefix node.

Also, in this stage, there is no sharing of DA tries to eliminate

the second case of backtracking.

Stage 3 (DP tree): A range tree is built for each leaf prefix
node of a DA trie if the number of rules at the node exceeds

a predefined threshold. The range tree is built using the DP

number of the rules. Fig. 1 illustrates a sample DP range table

and its corresponding range tree. The search space is divided

into disjoint range intervals. Each interval corresponds to a

single node of the range tree. Each node in the range tree

has at least one rule. For each rule, only the SP, PRTCL, and

Priority fields are stored.

Note that, in Stage 3, SP trees can also be used instead

of the DP trees. However, our analysis of the real life and

synthetic rulesets shows that the rules are distributed more

evenly between the nodes in the DP trees than in the SP trees.

Also, in Stage 3, the number of rules per node is relatively

small; hence, additional stages are not needed.

80-100

Rule DPlow DPhigh

R1 0 65535
R2 8 100
R3 17 17
R4 17 100
R5 80 222

0 655358 17 80 100 222

R1 R1 R1 R1 R1 R1
R2 R2 R2
R3 R4 R4

R5 R5

R1,R2,R4,R5

8-17 222-65535

R1,R2,R3 R1

0-8 17-80
100-222

R1,R5R1,R2,R4R1

Fig. 1. Range tree data structure (DP-tree)

We define two design parameters:

NRtrie: Our data structure stores the overlapped rules in the DA

trie nodes rather than pointing to a list of these rules. However,

the number of rules in each node is not constant. This

results in memory inefficiency in hardware implementation. To

improve the memory efficiency, we set a limit on the number

of overlapped rules per trie node, NRtrie. The remaining

overlapped rules are either used to construct a DP tree (if

they belong to a leaf node of DA trie), or otherwise moved to

a TCAM (the non-leaf trie rules).

NRtree: In the DP tree, the number of rules per node can vary.

We also set a limit on the number of rules per tree node,

NRtree. The remaining rules of the DP trees are also moved

to TCAM (the excessive tree rules).

Note that the rules moved to TCAM include: (1) the non-

leaf trie rules and (2) the excessive tree rules. For each rule,

all the 6 fields are stored, i.e. 〈SA, DA, PRTCL, SP , DP ,

Priority〉. Fig. 2 illustrates the CHSS using the sample ruleset

shown in Table I (with NRtrie = NRtree = 1). In general,

NRtrie and NRtree provide the trade-off between the size

of the on-chip memory and TCAM. These parameters also

affect the memory efficiency. Larger values of NRtrie and

NRtree decrease the number of rules stored in TCAM; and

hence the size of TCAM. However, this decreases the memory

efficiency. Additionally, we use path compression [13] for

trie structures to further improve the memory efficiency. Path

compression performs particularly well with the sparse trie

structures, making CHSS well suited for IPv6.

D. Design Methodology

Several design problems can be formulated to choose the

design parameters. Due to space limitation, we briefly describe

one design methodology. Let α denote the ratio of the number

of rules stored in the TCAM over the total number of rules of

the given ruleset. An example design problem is as follows.

Given a ruleset and an αT ≥ 0 as the input threshold, choose

NRtrie and NRtree such that α ≤ αT . Let NRmax be the

maximum number of rules that can be stored at each node over

the entire structure. First, NRmax can be easily determined

203

0

0 0

1

1

1

1

1

1 0

0

0

17 44 UDP R4

* 100 TCP R5

* * * R6

80 * TCP R11

0

0 1

1 0

17 17 UDP R2 80 * TCP R1

44 * UDP R3 0

0

* * TCP R7

Secondary
Data Structure

0* 1* * * TCP R9

* TCP R8

17 UDP R10

Fig. 2. The CHSS data structure for the sample ruleset in Table I

by building the CHSS for the given ruleset with α = 0 and

finding the maximum number of rules per node over the entire

CHSS. Secondly, we independently vary NRtrie and NRtree

from 1 to NRmax. For each 〈NRtrie, NRtree〉 pair, a CHSS
is generated and the resulting memory efficiency and α are

calculated. A design such that α ≤ αT is selected. In the

case that more than one design satisfies the constraint, the

design with the highest memory efficiency (or lowest memory

requirement) is returned.

E. Packet classification algorithm

For each incoming packet, all the 5 fields (SA, DA,

PRTCL, SP , DP) are extracted from the header and for-

warded to all the CHSS clusters. Search is performed in all

the clusters in parallel. The search operation in each stage is

carried out as follows:

SA trie: Search starts from the root node and continues

traversing the SA trie using the bits of the source IP address.

The traversal is determined by the most significant bit of the

SA (left if 0 or right otherwise). Search operation in the SA

trie terminates when a leaf node or a null pointer is reached.

If the search terminates in a leaf node, then the root address

of the corresponding DA trie is obtained.

DA trie: Search uses the destination IP address to traverse

the DA trie. In each node, the source port number SP, the

destination port number DP and the protocol PRTCL of the

packet header are compared with the corresponding fields of

the rules stored in that node in parallel. If the priority value of

the matched rule is higher than that of the last match, then the

search result is updated. As in the SA trie, the search operation

terminates when a leaf node or a null pointer is reached. If

search ends at a leaf node which points to a root of a DP tree,

then the root address of the corresponding DP tree is obtained.

DP tree: The destination port number of the incoming packet

is used to traverse the DP tree. At each node, the SP and

PRTCL fields of the packet are compared with the correspond-

ing fields of the rules stored in that node in parallel. Again,

if the priority value of the matched rule is higher than that of

the last match, then the match result is updated.

TCAM: Search in TCAM is performed in a single cycle.

All the fields of the packet header are compared with all the

TCAM entries in parallel.

SA

P
riority R

esolver

Pipelines 1

TCAM Delay

SA=*

Action
ID

DA DP

SA

Pipelines 2

DA DP

SA

Pipelines 3

DA DP

DA

Pipelines 4

DP Delay

Packet

Fig. 3. Multi-pipeline CHSS architecture

The search results from all the clusters are compared based

on their priority value. The matching rule with the highest

priority is returned as the final result.

Claim: Three types of backtracking are not needed in the

search using CHSS.

Proof: Type 1: The proposed clustering algorithm ensures

that all the SA prefixes within any cluster are disjoint. Thus,

at most one match is possible in each SA trie. Thus, once the

search leaves Stage 1 (SA trie), it does not have to jump back.

Type 2: In Stage 2, matching results can be resolved at each

node as rules are stored locally at the node. Hence, the search

can simply move in the forward direction. Type 3: There is no

sharing of DA tries between the Si tries. Therefore, the search

does not have to jump to other DA trie nodes and backtracking

is not required. �

IV. ARCHITECTURE AND IMPLEMENTATION ON FPGA

A. Architecture

Fig. 3 describes the overall architecture of the proposed

CHSS engine for packet classification. Pipelining is used to

improve the throughput. SA and DA denote pipelines for the

source and destination address prefix tries, respectively. DP

represents the pipeline for the DP trees. Each cluster has

3 pipelines: SA, DA, and DP. The collection of DA tries

associated with the leaf nodes of the SA trie within the same

cluster are mapped level by level onto the same DA pipeline.

Similarly, the collection of DP trees associated with the leaf

nodes of the DA trie within the same cluster are mapped

level by level onto the same DP pipeline. Therefore, the total

number of pipelines equals to the number of clusters ×3. In

the worst-case, there are 32× 3 pipelines for IPv4. However,

the worst-case scenario does not occur in practice. The number

of stages in each pipeline is determined by the height of the

tree structure. The SA and DA pipelines have 32 stages in the

worst case for IPv4. The depth of DP pipeline depends on the

number of disjoint DP ranges in the rule. Delay blocks are

added at the end of the shorter DP tree paths and the TCAM

to match the latency of the pipelines.

The BRAM of the state-of-the-art FPGAs supports dual-

ported feature. To take advantage of it, the architecture is

configured as dual linear pipelines to double the search rate.

These two pipelines have their own logic, but share the same

memory in each stage. The memory has dual Read/Write ports

so that two packets can be input every clock cycle.

204

TABLE II
MEMORY EFFICIENCY (BYTES PER RULE) FOR VARIOUS RULESETS

1 2 3 4 5 6 7 8 9 10 11

Ruleset N Set 1 Set 2 Set 3 Set 4 CHSS EGT [2] HyperCuts [16] BV [11] Hybrid scheme [8]

ACL 752 679 16 55 2 25.11 25.41 32.58 71.80 N/A

ACL100 98 85 3 10 0 21.54 27.69 27.78 47.35 24.44

ACL1K 916 798 28 85 5 22.44 24.96 38.15 91.63 22.98

ACL5K 4415 3927 279 201 8 23.95 24.87 59.64 257.23 24.83

ACL10K 9603 8416 496 684 7 22.21 30.23 54.22 789.22 25.51

FW 269 93 6 1 169 21.76 25.31 399.18 40.72 N/A

FW100 92 28 2 2 60 27.53 23.42 113.37 27.46 56.63

FW1K 791 268 23 12 488 23.84 23.80 6110.58 67.08 215.06

FW5K 4653 1554 264 34 2801 35.37 39.04 16132.65 691.69 255.13

FW10K 9311 3611 28 0 5672 41.25 49.45 12554.18 1582.18 248.54

IPC 1550 1207 201 13 129 21.80 26.63 128.52 61.57 N/A

IPC100 99 65 18 3 13 23.65 31.60 24.57 69.16 23.65

IPC1K 938 730 101 47 60 22.22 29.95 61.34 176.03 25.63

IPC5K 4460 3763 218 147 332 21.72 27.62 406.80 358.61 49.46

IPC10K 9037 7659 491 331 556 22.60 28.92 2378.35 788.69 43.30

B. Implementation

As previously stated, the two parameters NRtrie and

NRtree can be chosen based on a given ruleset to use the

available BRAM efficiently. In our design, we set a limit

on αT = 0.1 (the ratio of the number of rules stored

in the TCAM over the total number of rules of the given

ruleset). This ratio can be relaxed utilizing larger TCAMs

to further improve the memory efficiency. Given αT , NRtrie

and NRtree can be determined using the design methodology

shown in Section III-D. Furthermore, each pipeline of the

architecture can be independently implemented using different

set of parameters to achieve better memory efficiency.

V. PERFORMANCE EVALUATION

A. Memory requirement

Fifteen publicly available rulesets were collected from [19].

There are three different types of rulesets: Access Control List

(ACL), Firewall (FW), and IP Chain (IPC). Each group has 5
different filter sets, whose sizes range from 100 to 10K entries.

We applied the proposed clustering algorithm to each rule-

set. Our experimental results show that each ruleset has at

most 4 clusters. The total number of rules in each ruleset

(Column 2) and the size of each cluster are shown in Ta-

ble II (Columns 3-6). Note that Set 4 includes rules whose

SA length is zero (default prefix SA=*). Also in Table II,

Column 7 shows the best memory efficiency for each ruleset

using the corresponding 〈NRtrie, NRtree〉 pair. The memory

efficiency is computed by dividing the total amount of memory

required to store the entire CHSS by the total number of rules

(excluding the rules stored in TCAM). Each node in the entire

data structure is assumed to have 2 child pointers, requiring

2 bytes each. Columns 8-11 show the results of the existing

approaches for the same rulesets.

NRtrie and NRtree parameters provide the trade-off be-

tween the amount of memory used in the pipelines of CHSS
and TCAM. Our experiments using a collection of real life

tables show that, when NRtrie and NRtree are increased,

the size of the main data structure increases, and the size

of TCAM reduces. Furthermore, smaller values for these

parameters provide better memory efficiency; however, the size

of TCAM increases. Fig. 4(a) shows the memory efficiency

of the largest rulesets (ACL10K, FW10K and IPC10K) for

various NRtrie and NRtree values. Fig. 4(b) demonstrates

the impact of NRtrie and NRtree on the percentage of the

total number of rules stored in TCAM over total number of

rules for the largest ruleset in each case.

(a) Memory efficiency

(b) Percentage of the number of rules stored in TCAM

Fig. 4. Memory efficiency (Bytes/rule) and percentage of rules stored in
TCAM for 3 largest rulesets

B. Throughput

The proposed hardware design was implemented in Verilog,

using Xilinx ISE 12.4, with Xilinx Virtex-5 XC5VFX200T

with −2 speed grade as the target. The architecture supports

the largest ruleset ACL10K consisting of 9603 rules. The post

205

TABLE III
PERFORMANCE COMPARISON

1 2 3 4 5 6

Packet classification engines Platform # of rules Memory efficiency (Bytes/rule) Throughput (Gbps) Throughput efficiency (Gbps/B)

CHSS FPGA 9603 22.21 130.5 5.88

Hybrid scheme [8] FPGA 9603 25.51 80.00 3.14

Optimized HyperCuts [7] FPGA 9603 63.73 80.23 1.26

Simplified HyperCuts [10] FPGA 10000 28.60 10.84 0.38

BV-TCAM [17] FPGA 222 72.07 10.00 0.14

2sBFCE [14] FPGA 4000 44.50 2.06 0.05

Memory-based DCFL [6] FPGA 128 1726.56 24.00 0.01

B2PC [15] ASIC 3300 163.63 13.60 0.08

TABLE IV
IMPLEMENTATION RESULTS

Clock period Frequency Number of BRAM

(ns) (MHz) Slices (36-Kb block)

4.894 204 23064 55

place and route results are collected in Table IV. Using dual-

ported memory, the design can support 408 million packets

per second (MPPS), or 130.5 Gbps for the minimum packet

size of 40 bytes (or 320 bits). The designs that support

other experimental rulesets are much simpler; hence, they can

achieve a higher throughput.

C. Performance Comparison
The performance of CHSS is compared with the state-

of-the-art packet classification approaches with respect to

the memory efficiency in Bytes/rule, throughput in Gbps,

and throughput efficiency in Gbps/Bytes (the ratio of the

throughput to the memory efficiency). The results for the

existing designs were reported in [8]. Note that all the designs

have been implemented on a Xilinx Virtex-5 device for fair

comparisons. Columns 7-11 in Table II show that, our scheme

exhibits the superior memory efficiency, compared with the

existing approaches for the same rulesets. Furthermore, the

variation of the memory efficiency in CHSS is smaller than

that of the other solutions. Table III gives the throughput and

throughput efficiency of the state-of-the-art hardware-based

packet classification engines. Column 5 shows that our design

achieves the highest throughput performance among all the

existing architectures. Our scheme also outperforms all the

existing schemes with respect to the throughput efficiency, as

shown in Column 6.

VI. CONCLUSION

In this paper, we proposed CHSS, a memory efficient

clustered hierarchical data structure for packet classification.

Our experimental results show that CHSS outperforms the

state-of-the-art approaches with respect to memory efficiency.

A drawback of our design is the need of TCAM. Additionally,

the number of clusters generated by our clustering algorithm is

ruleset-dependent. In the future work, we plan to (1) minimize

or eliminate the TCAM, (2) modify the proposed algorithm

to output a fixed number of clusters, (3) extend the idea to

support the IPv6 standard, and (4) support packet classification

in virtual routers.

REFERENCES

[1] F. Baboescu, S. Rajgopal, L. Huang, and N. Richardson. Hardware
implementation of a tree based IP lookup algorithm for oc-768 and
beyond. In Proc. DesignCon ’05, 2005.

[2] F. Baboescu, S. Singh, and G. Varghese. Packet classification for core
routers: Is there an alternative to cams. In In IEEE INFOCOM, 2003.

[3] G. Brebner. Reconfigurable computing for high performance networking
applications. In A. Koch, R. Krishnamurthy, J. McAllister, R. Woods,
and T. El-Ghazawi, editors, Reconfigurable Computing: Architectures,
Tools and Applications, volume 6578 of Lecture Notes in Computer
Science, pages 1–1. Springer Berlin / Heidelberg, 2011.

[4] J. Dharmapurikar, S. Lockwood. Fast and scalable pattern matching for
network intrusion detection systems. IEEE Journal on Selected Areas
in Communications, 24(10):1781–1792, 2006.

[5] P. Gupta and N. Mckeown. Packet classification using hierarchical
intelligent cuttings. In in Hot Interconnects VII, pages 34–41, 1999.

[6] G. S. Jedhe, A. Ramamoorthy, and K. Varghese. A scalable high
throughput firewall in fpga. In Proceedings FCCM, pages 43–52,
Washington, DC, USA, 2008. IEEE Computer Society.

[7] W. Jiang and V. K. Prasanna. Large-scale wire-speed packet classifi-
cation on fpgas. In Proceedings of the FPGA 2009, FPGA ’09, pages
219–228, New York, NY, USA, 2009. ACM.

[8] W. Jiang and V. K. Prasanna. Scalable packet classification: Cutting or
merging? In Proceedings of the ICCCN ’09, ICCCN ’09, pages 1–6,
Washington, DC, USA, 2009. IEEE Computer Society.

[9] W. Jiang, V. K. Prasanna, and N. Yamagaki. Decision forest: A scalable
architecture for flexible flow matching on fpga. International Conference
on Field Programmable Logic and Applications, 0:394–399, 2010.

[10] A. Kennedy, X. Wang, Z. Liu, and B. Liu. Low power architecture for
high speed packet classification. In ANCS’08, pages 131–140, 2008.

[11] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet for-
warding using efficient multi-dimensional range matching. SIGCOMM
Comput. Commun. Rev., 28:203–214, October 1998.

[12] H. Le and V. K. Prasanna. Scalable high throughput and power efficient
ip-lookup on fpga. In Proc. FCCM ’09, 2009.

[13] D. R. Morrison. Patriciapractical algorithm to retrieve information coded
in alphanumeric. Journal ACM, 15:514–534, October 1968.

[14] A. Nikitakis and L. Papaefstathiou. A memory-efficient fpga-based
classification engine. Proceedings FCCM, 0:53–62, 2008.

[15] I. Papaefstathiou and V. Papaefstathiou. Memory-efficient 5d packet
classification at 40 gbps. In Proceedings INFOCOM, pages 1370 –1378,
May 2007.

[16] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification
using multidimensional cutting. In Proc. SIGCOMM, SIGCOMM ’03,
pages 213–224, New York, NY, USA, 2003. ACM.

[17] H. Song and J. W. Lockwood. Efficient packet classification for network
intrusion detection using fpga. In Proc. FPGA, FPGA ’05, pages 238–
245, New York, NY, USA, 2005. ACM.

[18] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable
layer four switching. SIGCOMM Comput. Commun. Rev., 28:191–202,
October 1998.

[19] D. E. Taylor and J. S. Turner. Classbench: a packet classification
benchmark. IEEE/ACM Trans. Netw., 15:499–511, June 2007.

[20] P. Tsuchiya. A search algorithm for table entries with non-contiguous
wildcarding. Unpublished report. Bellcore.

206

